Lösungen Zur PQ-F und Scheitelpunkt
Mit PQ-Formel gelöst:
- x2 - 5x - 6 = 0
- x2 - 5x - 6 = 0 (Standard Form)
- "p" und "q" rausfinden Im vergleich mit der Standard Form der PQ-Formel, haben wir: p = - 5 und q = - 6:
- "p" und "q" in der PQ-Formel einsetzen: x1/2 = - (- 5/2) ± √((- 5/2)2 - (- 6)) => x1/2 = 2,5 ± 3,5
- x1 = 2,5 + 3,5 = 6 => x1 = 6 und
x2 = 2,5 - 3,5 = - 1 => x2 = - 1
Die Gleichung hat die Lösung: L = {- 1 | 6} - x2 - 6x = 27
- x2 - 6x = 27| -27 (in der Standard Form bringen)
=> x2 - 6x - 27 = 0 - "p" und "q" rausfinden
=> p = - 6, q = - 27 - "p" und "q" in der PQ-Formel einsetzen: x1/2 = - (- 6/2) ± √((- 6/2)2 - (- 27)) => x1/2 = 3 ± 6
- x1 = 3 + 6 = 9 => x1 = 9 und
x2 = 3 - 6 = - 3 => x2 = - 3
Die Gleichung hat die Lösung: L = {- 3 | 9} - x2 - 6x = 27| -27 (in der Standard Form bringen)
- 3x2 + 30x + 72 = 0
- 3x2 + 30x + 72 = 0 | :3 (in der Standard Form bringen)
=> x2 + 10x + 24 = 0 - "p" und "q" rausfinden
=> p = 10, q = 24 - "p" und "q" in der PQ-Formel einsetzen: x1/2 = - (10/2) ± √((10/2)2 - 24) => x1/2 = - 5 ± 1
- x1 = - 5 + 1 = - 4 => x1 = - 4 und
x2 = - 5 - 1 = - 6 => x2 = - 6
Die Gleichung hat die Lösung: L = {- 6 | - 4} - 3x2 + 30x + 72 = 0 | :3 (in der Standard Form bringen)
Scheitelpunkt:
Solutions Quadratic Equations:
- 3x2 + 5x + 1 = 0
to solve this equation we need 2 formulas:
- a quadratic equation in standard form ax2 + bx + c = 0, with a, b and c constant numbers and a # 0
- a quadratic formula x1/2 = (- b ± √(b2 - 4ac)) / 2a
and
3/3x2 + 5/3x + 1/3x0 = 0 (x0 = 1) | (:3 to bring the eq. to a standard form)
a = 1 | b = 1.66 | c = 0.33 (by comparing with the standard form)
the Discriminant Δ = b2 - 4ac = 1.662 - 4 ⋅1⋅0.33 = 1.435 > 0 => 2 solutions x1 and x2
x1/2 = (- 1.66 ± √(1.662 - 4⋅1⋅0.33)) / 2⋅1 = - 0.83 ± 0.6
x1 = - 0.83 + 0.6 = - 0.23 => x1 = - 0.23 | x2 = - 0.83 - 0.6 = - 1.43 => x2 = - 1.43
The final solution S = { - 1.43 | - 0.23}
Comments
Post a Comment